Traction force and tension fluctuations in growing axons
نویسندگان
چکیده
Actively generated mechanical forces play a central role in axon growth and guidance, but the mechanisms that underly force generation and regulation in growing axons remain poorly understood. We report measurements of the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stress field from a reference frame that moves with it, we are able to show that there is a clear and consistent average stress field that underlies the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. Using high time-resolution measurements of the growth cone traction stresses, we show that the stress field is composed of fluctuating local stress peaks, with a large number peaks that live for a short time, a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We show that the high time-resolution data also reveal that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.
منابع مشابه
Myosin IIB is required for growth cone motility.
Growth cones are required for the forward advancement and navigation of growing axons. Modulation of growth cone shape and reorientation of the neurite are responsible for the change of outgrowth direction that underlies navigation. Change of shape involves the reordering of the cytoskeleton. Reorientation of the neurite requires the generation of tension, which is supplied by the ability of th...
متن کاملDNA-based digital tension probes reveal integrin forces during early cell adhesion
Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ imm...
متن کاملThe phospho–caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration
Caveolin-1 (Cav1), a major Src kinase substrate phosphorylated on tyrosine-14 (Y14), contains the highly conserved membrane-proximal caveolin scaffolding domain (CSD; amino acids 82-101). Here we show, using CSD mutants (F92A/V94A) and membrane-permeable CSD-competing peptides, that Src kinase-dependent pY14Cav1 regulation of focal adhesion protein stabilization, focal adhesion tension, and can...
متن کاملDynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons
Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and i...
متن کاملSpatiotemporal constraints on the force-dependent growth of focal adhesions.
Focal adhesions (FAs) are the predominant mechanism by which cells mechanically couple to and exert traction forces on their extracellular matrix (ECM). It is widely presumed that FA size is modulated by force to mediate changes in adhesion strength at different levels of cellular tension. However, previous studies seeking correlations between force and FA morphology have yielded variable and o...
متن کامل